An Evolutionary Path to Object Storage

Access

David Goodell,* Seong Jo Kim," Robert Latham,*
Mahmut Kandemir,” and Robert Ross*
*Mathematics and Computer Science Division

Argonne National Laboratory

{goodell,robl,rross } @mcs.anl.gov

tDepartment of Computer Science and Engineering

Pennsylvania State University

{seokim,kandemir} @cse.psu.edu

Abstract—High-performance computing (HPC) storage sys-
tems typically consist of an object storage system that is accessed
via the POSIX file interface. However, rapid increases in system
scales and storage system complexity have uncovered a number of
limitations in this model. In particular, applications and libraries
are limited in their ability to partition data into units with
independent concurrency control, and mapping complex science
data models into the POSIX file model is inconvenient at best.

In this paper we propose an alternative interface for use
by applications and libraries that provides direct access to
underlying storage objects. This model allows applications and
libraries to organize storage access around these objects in
order to avoid lock contention without needing to create many
separate files. Additionally, complex data models are more readily
organized into multiple object data streams, simplifying the
storage of variable-length data and allowing a choice of degree
of parallelism related to access needs. Our approach provides for
datasets stored in this new model to coexist with POSIX files,
allowing evolution to the new model over time. We apply these
concepts in the PVFS, PLFS, and Parallel netCDF packages to
prototype the model and describe our experiences.

I. INTRODUCTION

Computing systems have long presented persistent storage
as a collection of files organized in a directory hierarchy.
The POSIX file system interface is a standard for accessing
persistent storage in this model [1]], and both the standard
and the “files and directories” abstraction have been highly
successful. Various alternatives and extensions to this model
have existed over time; as parallel computing has grown,
groups have investigated various options for parallelism in the
I/O path that expose alternative file system models. The MPI-
IO portion of the MPI-2 standard [2]] defined an interface for
accessing POSIX-style files from MPI applications. While this
interface has seen limited success, alternative file models have
not gained traction in the parallel I/O context.

Many parallel file systems (PFSes) today [3], [4], [S], [6]
support the object storage model, where a file is mapped onto a
set of objects distributed across storage servers. These objects
can each be thought of as an independent linear array of bytes,
but PFSes combine these into a single linear array of bytes
via some distribution function (Figure [T). This approach often
leads to poor performance [7] and does not directly support
the complicated datasets of many scientific applications that
instead use libraries such as Parallel netCDF [8] and HDF5 [9]

to better capture structure.

As the community builds and deploys ever more capable
computing systems, the demands placed on the storage system
grow at a rate commensurate with the ability to generate new
results. Researchers and developers are examining all aspects
of the storage stack in order to maximize efficiency of the
system, from new methods of organizing I/O among compute
processes [10]], [L1], to the addition of new architectural
features that better balance I/O traffic over time [12], [IL3]].
However, the majority of this work assumes an external storage
system providing the POSIX file model.

In this work we present an extension to the POSIX API
that exposes a different abstraction for storing data that allows
the user (i.e., library or application) to take advantage of the
multiple byte arrays already present in arrays of storage objects
(Section [M). This extended model coexists with traditional
POSIX file data, providing a clean path for adoption of the
new model by applications and libraries over time. We then
describe an implementation of this extension using PVFES [4]]
as our starting point (Section and discuss how we have
modified two popular I/O libraries, parallel log-structured file
system (PLFS) [11] and Parallel netCDF [§]], to take advantage
of the extension’s features (Section [V).

II. RELATED WORK

A number of approaches have extended the byte stream
model for files. The Microsoft NTFS file system includes
the concept of alternate data streams, which are a method
of associating multiple, named “streams” of data under the
same file name [14]. The IBM Virtual Storage Access Method
(VSAM) of persistent data access allows for multiple access
modes (sequential, random, and indexed), the definition of
records of fixed or variable size, and a concept of a key
associated with each record [[15]].

The Galley parallel file system [[L6] supported the concept
of subfiles. Rather than supporting a single linear array of
bytes in a file, N subfiles were allocated at creation time,
each mapping to a distinct disk. These subfiles held a set of
forks, each of which provided a linear array of bytes. Access
was provided on a per fork basis, meaning that any distribution
of data across multiple subfiles had to be managed by upper
software layers. Nieuwejaar and Kotz [16]] note that these forks
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are lighter weight from a metadata perspective than separate
files and provide a convenient means of grouping related data
together.

More recently, researchers have investigated similar meth-
ods for guiding I/O from many processes to distinct subfiles
(reusing the name) on Lustre [17]. In this approach, subfiles
are created as applications write data, avoiding the need for
creating a file per process and the associated overheads. These
subfiles can span multiple storage nodes and are stitched back
into a single stream of bytes (‘“joined”) at file close time, so
that after file close the data appears as a single POSIX file.

The Distributed Application Object Storage (DAOS) [18]]
model being developed by Intel, EMC, and the HDF Group
has similarities to the model described here, though it departs
more aggressively from POSIX than our work does. The
DAOS model, for example, employs a separate scalable object
namespace and defines transactions over collections of clients.

III. OBJECTS IN A POSIX NAMESPACE

Many (if not most) PFSes today use an object storage
abstraction [19] underneath. Figure [I| depicts an example of
how these systems operate: the file system uses metadata
information associated with the file name that includes a list
of objects and a set of distribution parameters to map from
offsets in the POSIX byte array (i.e., offsets in the file) to
regions of objects on specific storage servers.

The major difference from the Galley [16]] model is that in
modern PFSes, the PFS, rather than the user (or a library),
is responsible for performing the mapping from POSIX file
locations to the byte arrays in storage.

Our goal in this work is to provide a new abstraction for
storage that enables higher performance for HPC applications
while coexisting with the POSIX name space that is the basis
of most HPC storage deployments. Our approach is to expose a
set of objects (actually an ordered list) associated with a single
file name (a container), leveraging the fact that this reflects
the underlying storage organization of many systems today.
This model moves the responsibility of mapping application
data structures into the objects from the file system to the
libraries or application. In this work we assume that the
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Distribution of POSIX file byte array into a set of objects. POSIX model means striping must happen without regard to any application structure.

underlying storage performs consistency management (i.e.,
locking), if any, on a per object basis; we assume that creating
many objects under a single file name is faster than creating
multiple files in the name space. This approach has two major
advantages. First, the model separates the creation of multiple
data streams from the creation of names in the name space.
Second, the model allows the multiple data streams present
in the individual objects to be used directly for organizational
purposes. These advantages are showcased in Section V.

IV. SUPPORTING OBJECT ACCESS IN PVFS

To prototype our extensions, we modified the Parallel Vir-
tual File System source obtained from CVS in May 2012
(v2.8.2 with additions). Only client-side modifications were
required to facilitate the new model. A new API for object-
based access was added and implemented by using code
derived from the existing PVFS2 POSIX code.

A. New API

The prototype API provides all essential functionality
through a simple APL Listing [I] shows the entire APL

The tr_create_objs routine creates a new collection,
referenced by path_name, with num_objs number of
objects. In the prototype, this path corresponds to a PVFS
file that can be seen via regular 1s. The object IDs are
returned in the ids array. An optional constraint interface
allows callers to specify key-value pairs that constrain object
placement and/or performance characteristics. The constraints
are currently unused in the prototype but are provided as an
avenue for future exploration.

In order to obtain the ordered list of object IDs for an
existing collection, tr_lookup_objs may be called. It
takes arguments similarly to create, but with the small
difference of allocating the ID array instead of requiring it
to be allocated ahead of time and then populated. The number
of objects in the named collection may not be known a priori,
so this information is also returned by this call.

Data can be read from an object or written to an object
with one of the four tr_obj_ I/O calls: read_contig,



write_contig, readx, and writex. The first two rou-
tines permit simple contiguous I/O, while the last two of-
fer a noncontiguous-I/O interface. Their definitions are in-
tuitive and correspond roughly to POSIX read/write and
readx/writex.

B. PVFS2 Client Implementation Details

The existing, underlying PVFS2 object model decomposes
a logical (user-visible) POSIX file into a single metafile,
containing metadata, and one or more datafiles, containing
file extent data. A distribution function is then applied to
map logical file extents into extents within the datafiles. The
datafiles are identified by a PVFS_object_ref, which is a
(handle, file-system-id) integer pair with 128-bit total width.

Our prototype reuses these existing concepts, although the
significance of the metafile is somewhat reduced, since the
distribution function and parameters are no longer consulted.
The primary use of the metafile is simply to map from a PVFS
pathname to a set of constituent objects. The tr_oid type
is merely a PVFS_object_ref, allowing direct I/O access
by a client to/from individual objects without intervening
metadata lookups.

PVFS2 uses a code generation process to generate “state
machine” code from a C-based domain language. These state
machines simplify the implementation of otherwise tedious
nonblocking I/0O code paths. Two new state machines were
added to the PVFS2 prototype: one for object collection
creation and one for read/write I/O operations to a single
object. The creation state machine is loosely based on the
POSIX file creation state machine (sys—create. sm), with
numerous simplifications. In particular, the “file stuffing”
optimizations that defer datafile creation [20]] were eliminated
in order to ensure that individual object I/O paths would be
straightforward.

The object read-write state machine is based on the POSIX
I/O state machine (sys—1io.sm). Since file stuffing has been
disabled and this code accesses only individual datafiles, rather
than high-level logical files, querying the distribution function
is not needed.

V. USING OBJECTS IN HPC I/O LIBRARIES

Increasingly, applications are taking advantage of I/O li-
braries that provide either higher performance (e.g., PLES) or a
more convenient abstraction than POSIX for storing scientific
data (e.g., HDF5, PnetCDF, ADIOS), or both. In this section,
we consider how our new API affects these libraries.

A. Parallel Log-Structured File System

Log-structured file systems [21] are designed to achieve
high write performance. All updates to data and metadata
are sequentially written to a contiguous stream, called a log.
Similarly, the Parallel Log-structured File System (PLFS) was
designed to improve checkpoint bandwidth for writes. PLFS
is implemented as a user-space file system, exposed through
FUSE [22] or MPI-IO [2]. In Figure @] when multiple client
processes all open/write the shared checkpoint file (“foo”) in

the PLFS layer, PLFS creates a container in the underlying
target PFS (e.g., Lustre, PanFS). Here, the container is a
hierarchical directory tree that consists of a single top-level
directory (i.e., “foo/”) with the same name as the logical
file and subdirectories (i.e., “hostA/” and “hostB/”). On each
compute node a unique subdirectory is created for each client
host, and a pair of data and index file (i.e., “data.#” and
“index.#”) is created for each process within those directories.
Though multiple processes open the same logical file for
writing and share the top-level container, each process opens
its unique data file within the subcontainer and appends writes
to it in a log-structured fashion. After writing to a data file,
PLFS appends the metadata information to the associated
index file maintained to permit later reads. By remapping
writes to a shared checkpoint file from a parallel application
to a nonshared data file, PLFS converts an N-1 strided access
pattern into an N-N one.

Our object storage model is illustrated in Figure [2(b)
For our prototype, we plugged the ad_plfs interface into the
ROMIO ADIO layer of MPICH2-1.5, porting the version of
PLFS currently available online. In our current implementa-
tion, application programs directly make MPI-IO calls to reach
PLFS. Also, the PLFS library is modified to support our new
API for object-based access, described in Section Unlike
the container in stock PLFS, a hierarchical directory tree,
the container (“foo”) here is an object collection represented
by a single file name on the underlying parallel file system.
The collection consists of (index, data) object pairs for each
process. When the application writes a checkpoint file, the root
process creates the container with (index, data) object pairs for
each processes and broadcasts the constituent object IDs to the
other processes. Then, each process obtains its corresponding
object ID pairs from the received object IDs. During writes,
each process appends data to the data object and metadata
information to the associated index object using two calls to
tr_obj_write_contig.

When reading a file, for example, restarting a computation
from a checkpoint file generated in a previous run, the root
process looks up the object IDs and broadcasts them to the
others. Index reconstruction is largely unchanged from the
original PLFS approach; it just occurs on multiple objects
rather than multiple files. Any optimizations the PLFS team
might develop related to index storage should be easily applied
in this new approach.

B. Parallel netCDF

The Parallel netCDF (PnetCDF) library provides an inter-
face for parallel reading and writing of data in the netCDF [23]]
file format. NetCDF allows for the storage of multiple, typed,
multidimensional arrays in a single dataset (i.e., file) along
with attributes on the arrays and the dataset itself. Arrays
can be of fixed dimensions (termed nonrecord arrays) or
have one dimension in which they may grow (record arrays).
When mapped into a POSIX file, tiles of these record arrays
are interleaved in the file so that space may be allocated
algorithmically as the record arrays grow. In general, the



typedef struct { int n; char xxkeys; char xxvals; }

tr_constraints;

int tr_create_objs(const char xpath_name, tr_constraints *constraints,

int num_objs, tr_oid ids[]);
int tr_destroy_objs(const char xpath_name);

int tr_lookup_objs (const char xpath_name, int *num_objs, tr_oid =*ids[]);

int tr_obj_read _contig(tr_oid id, tr_offset offset, size_t count, wvoid xbuffer, size_t =xnout);

int tr_obj_write_contig(tr_oid id,

tr_offset offset, size_t count, const void xbuffer);

ssize_t tr_obj_readx(tr_oid id, const struct iovec xiov, size_t iov_count,
const struct xtvec xxtv, size_t xtv_count, size_t =xnout);
ssize_t tr_obj_writex(tr_oid id, const struct iovec *iov, size_t iov_count,

struct xtvec *xtv, size_t xtv_count);
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Fig. 2. Comparisons of data remapping schemes in PLFS and the object storage model. In @ PLFS creates a container (a hierarchical directory tree) and
appends data and index to the corresponding files. In the object storage model in @ a container is created as a file containing (index,data) object pairs for
each process. Data and metadata are appended to the corresponding object, respectively.

ability to grow arrays over time is desired by application
teams, and support for this model is provided in HDF5 and
has been explored in other research activities [24].

Figure [3(a)] depicts the mapping of a dataset described by
netCDF into a POSIX file. Header data (shown) and nonrecord
arrays (not shown) come first in the POSIX file’s byte stream.
The two record arrays in the dataset are interleaved at the
end of the file. This logical flat file is then distributed among
servers in the PFS, without regard for compatibility between
file system distribution parameters and the layout of the
netCDF arrays. For example, a record array with an 8§ MB
record size (e.g., a 100 x 100 x 100 3-D array of doubles)
might be interleaved with another record array with a 24 MB
record size, all of which is then striped across 12 servers with
a 64 KiB stripe size. The factorizations and multiplicities of
these sizes lead to irregularly aligned access. The presence of
the header has further potential to misalign data, although the
header may be padded to a stripe boundary (if the stripe unit
is known).

Record variable storage has another performance drawback.
The interleaved storage approach results in pathologically
noncontiguous accesses for several common access methods.
For example, reading a subcube out of a 3D array stored in
record format can result in reading vastly more data than
needed because of “data sieving” in the underlying MPI-10
library [25]].

Starting with Parallel netCDF SVN revision r1049, we

modified the library to map netCDF datasets onto our new
abstraction. Figure [3(b)] shows how our object-based PnetCDF
prototype maps the same dataset onto the set of objects
provided by our object storage model. The header and each
array are mapped to their own set of one or more objects. One
minor immediate benefit is that doing so greatly simplifies
the implementation effort involved in reading/writing from/to
variables, especially for noncontiguous access. However, a
much more valuable product of this shift is the ability of
PnetCDF to control the data distribution on a per variable
basis. This makes it substantially easier to avoid misaligned
data access and to reason about parallel I/O performance, all
on a per dataset basis, rather than a system wide basis.

In our prototype, each PnetCDF variable has its own distri-
bution function, described by a (stripe_size_bytes, object_set)
pair. Data is striped byte wise in a row-major fashion (bytes
from the fastest-varying dimension are adjacent). More com-
plex distributions could be implemented easily, if needed. By
default, arbitrary parameters of two objects and a stripe size of
64 KiB are used. In the future we intend to examine heuristics
for automatically selecting object counts and stripe sizes based
on the array layout described by the user.

VI. OTHER CONSIDERATIONS

File size. Our approach moves the role of the distribution
function into applicaiton or library space. Without a distribu-
tion function, the PFS must report file size (as when stat
is called) by simply computing the total size of data stored
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simplifying the implementation of PnetCDF.

in constituent objects. Such an approach may not deal with
“sparse files” accurately. Furthermore, if the PFS could expose
the size of individual objects, some application structure could
be visible with traitional POSIX utilities.

Access control and extended attributes. We propose that
access control and extended attrbutes, two pieces of POSIX
functionality, be unchanged in our model. Existing metadata
management should be adequate, and fine-grained control over
access to individual objects in the container does not appear
to be needed for the use cases that we have studied to date.

Copying collections. Notionally, a collection could be
copied by creating a new set of objects of the same size as the
collection of objects in the source and copying the contents
of each object into the corresponding object in the new list.
However, we do not assume the OIDs would be identical
in the new collection. If libraries or applications using this
model indirectly reference object IDs internally (i.e., store an
index into the object list when referring to the object holding
some variable, rather than the OID itself), this approach is
adequate, although it requires a custom utility. This approach
implies the need to hold portions of the OID list in memory
for referencing. For lists of small size, this is not considered a
problem; if these lists grow larger, a more capable replacement
for tr_lookup_objs will be needed to facilitate reading
subsets of the overall list.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new abstraction for
storage that enables higher performance for HPC applica-
tions while coexisting with the legacy POSIX name space.
Compared with the POSIX interface, this container of objects
model maps more closely both to application and library
needs and to the architecture of modern storage systems. By
moving the responsibility of mapping application data struc-

tures into storage objects out of the storage system, we give
the application greater control over performance (e.g., from
alignment and metadata issues) while simultaneously offering
opportunities for simpler implementation through simpler data
organization. We implemented a prototype of this model in
PVES and evaluated the qualitative impact of adapting PLFS
and PnetCDF to use this prototype. We found that our model
fits naturally into these I/O libraries, generally simplifying
their implementation. We showed how this new model can
coexist with the POSIX model, aiding transition away from
POSIX. Furthermore, the fact that our model is particularly
suited to I/O middleware libraries should even further ease
the transition for applications in the future.

We intend to study our model in scenarios with a far greater
number of objects. For example, rather than mapping an array
in a PnetCDF dataset to a handful of objects, is there value
in mapping to thousands of objects? On the flip-side of this
question is an exploration of the design space for the storage
system itself. This paper has focused primarily on the impact
on libraries, as well as a straightforward implementation of
our new model in PVFS. With many more objects, the storage
system may have greater opportunity for internal optimization.
Another area of future work is to study the impact of object
locality and how that might best be expressed to an application
by the storage system. Object storage may also affect the way
that I/O forwarding [26] stacks are designed and implemented.
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